3*(5-2x)=9x^2+9

Simple and best practice solution for 3*(5-2x)=9x^2+9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3*(5-2x)=9x^2+9 equation:



3(5-2x)=9x^2+9
We move all terms to the left:
3(5-2x)-(9x^2+9)=0
We add all the numbers together, and all the variables
3(-2x+5)-(9x^2+9)=0
We multiply parentheses
-6x-(9x^2+9)+15=0
We get rid of parentheses
-9x^2-6x-9+15=0
We add all the numbers together, and all the variables
-9x^2-6x+6=0
a = -9; b = -6; c = +6;
Δ = b2-4ac
Δ = -62-4·(-9)·6
Δ = 252
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{252}=\sqrt{36*7}=\sqrt{36}*\sqrt{7}=6\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6\sqrt{7}}{2*-9}=\frac{6-6\sqrt{7}}{-18} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6\sqrt{7}}{2*-9}=\frac{6+6\sqrt{7}}{-18} $

See similar equations:

| 5=4+j/2 | | 4(w+1)=8w-24 | | 5-4x=2x+x | | 4(-8x+5)=-30x-26 | | 7(3x+1)−6x=2(7+8x) | | -20=4+y/4 | | 3x-5=8x+ | | 4x+6(8x-2)=252 | | 1(4x+16x)+48=2(8-4x)+40 | | -10(x+4)=-2(1+5x) | | 7(p+3)-5(p-2)+3p=-9 | | w/4-4=5 | | 3x+2+2x=49 | | 12(1/2x+1/3)=8-2x | | 5/9x-22=18 | | -6a+-3=3(2a-1) | | 65+13x=26x | | 60+20y=40y | | 2(5x+9)=-28+16 | | 7w-18=2(w+1) | | -3x+12x-22=41 | | 5x+7+8x=1 | | -6(5-2x)=-15-3x | | 4(5x+15)=80 | | 3(4x+5)=-23+2 | | -(p+8)+6(p+4)=5p+16 | | 11a+13=49-a | | 21+4n=2(n-2)-3n | | 2(x-2)-3(x-5)=4(x+3) | | -6+14+7x=4+x+10 | | -4(2x+6)=0 | | (2/5)^t=-1,4 |

Equations solver categories